Solve for x 3/(5x)+1/(6x)>2/3

Math
Simplify .
Tap for more steps…
To write as a fraction with a common denominator, multiply by .
To write as a fraction with a common denominator, multiply by .
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps…
Multiply and .
Multiply by .
Multiply and .
Multiply by .
Combine the numerators over the common denominator.
Simplify the numerator.
Tap for more steps…
Multiply by .
Add and .
Solve for .
Tap for more steps…
Multiply each term by and simplify.
Tap for more steps…
Convert the inequality to an equation.
Multiply each term in by .
Cancel the common factor of .
Tap for more steps…
Factor out of .
Cancel the common factor.
Rewrite the expression.
Combine and .
Rewrite the equation as .
Multiply both sides of the equation by .
Simplify both sides of the equation.
Tap for more steps…
Simplify .
Tap for more steps…
Cancel the common factor of .
Tap for more steps…
Cancel the common factor.
Rewrite the expression.
Cancel the common factor of .
Tap for more steps…
Factor out of .
Cancel the common factor.
Rewrite the expression.
Simplify .
Tap for more steps…
Cancel the common factor of .
Tap for more steps…
Factor out of .
Cancel the common factor.
Rewrite the expression.
Multiply and .
Multiply by .
Find the domain of .
Tap for more steps…
Set the denominator in equal to to find where the expression is undefined.
Divide each term by and simplify.
Tap for more steps…
Divide each term in by .
Cancel the common factor of .
Tap for more steps…
Cancel the common factor.
Divide by .
Divide by .
The domain is all values of that make the expression defined.
Use each root to create test intervals.
Choose a test value from each interval and plug this value into the original inequality to determine which intervals satisfy the inequality.
Tap for more steps…
Test a value on the interval to see if it makes the inequality true.
Tap for more steps…
Choose a value on the interval and see if this value makes the original inequality true.
Replace with in the original inequality.
The left side is not greater than the right side , which means that the given statement is false.
False
False
Test a value on the interval to see if it makes the inequality true.
Tap for more steps…
Choose a value on the interval and see if this value makes the original inequality true.
Replace with in the original inequality.
The left side is greater than the right side , which means that the given statement is always true.
True
True
Test a value on the interval to see if it makes the inequality true.
Tap for more steps…
Choose a value on the interval and see if this value makes the original inequality true.
Replace with in the original inequality.
The left side is not greater than the right side , which means that the given statement is false.
False
False
Compare the intervals to determine which ones satisfy the original inequality.
False
True
False
False
True
False
The solution consists of all of the true intervals.
The result can be shown in multiple forms.
Inequality Form:
Interval Notation:
Solve for x 3/(5x)+1/(6x)>2/3

Do you need help with your Math Task

We can help to solve your math questions

Our Math Experts

They can help to solve your math problems

Scroll to top